The U.S. Waterway System - TRANSPORTATION FACTS

Navigation Data Center
U.S. Army Corps of Engineers
December 2004

U.S. Waterborne Traffic by Major Commodities in 2003 (Millions of Short Tons¹ and Change from 2002)

				Dom	nestic			
	Coastwise		Lakewise		Internal		Tot	al
Commodities ²	Tons	%	Tons	%	Tons	%	Tons	%
Total ³	223.5	3.3	89.8	-11.5	609.6	.3	1,016.1	5
Coal	10.6	-19.0	17.7	-7.7	165.6	-2.9	207.7	-6.6
Coal Coke	**	-100.0	0.3	13.1	5.1	25.8	5.9	24.0
Crude Petroleum	51.0	5	**	0	34.7	6.1	87.5	2.3
Petroleum Products	110.4	7.1	1.5	-21.2	114.8	1.6	273.3	3.9
Chemical and Related Prod.	13.0	-1.7	0.2	28.9	51.5	8.1	75.7	3.6
Forest Prod., Wood & Chips	2.0	2.3	**	-77.9	5.5	-18.4	8.1	-12.5
Pulp and Waste Paper	**	45.9	**	0	0.1	20.6	0.2	43.9
Sand, Gravel and Stone	10.6	3.6	25.5	-10.1	85.4	4.8	130.8	1.6
Iron Ore and Scrap	0.4	22.4	39.1	-16.5	11.2	6.1	52.9	-9.5
Non-Ferrous Ores & Scrap	0.7	43.5	**	-49.0	6.2	1.7	6.9	4.2
Sulphur, Clay and Salt	0.1	141.3	0.7	47.1	7.6	10.9	8.7	15.1
Primary Manuf. Goods	8.8	4.8	3.9	11.2	25.9	-4.4	41.7	-1.7
Food and Farm Products	6.1	3.1	0.3	-9.9	84.0	-7.7	90.9	-6.8
All Manuf. Equipment	9.6	19.7	**	-15.4	7.7	29.9	18.7	28.4
Waste and Scrap, NEC	**	-98.5	**	0	1.3	30.6	3.1	13.2

			F	oreign			Gra	and
	Inbound		Outbound		Total		То	tal
Commodities ²	Tons	%	Tons	%	Tons	%	Tons	%
Total ³	1,004.8	7.5	373.3	-2.9	1,378.1	4.5	2,394.2	2.3
Coal	22.4	44.8	41.9	-2.4	64.2	10.1	271.9	-3.1
Coal Coke	2.6	116.4	0.8	126.2	3.4	118.5	9.2	47.4
Crude Petroleum	515.7	7.6	1.2	3.3	517.0	7.6	604.5	6.8
Petroleum Products	145.8	12.2	57.0	-3.0	202.7	7.4	476.1	5.4
Chemical and Related Prod.	42.0	6.2	53.6	-2.5	95.6	1.1	171.3	2.2
Forest Prod., Wood & Chips	7.4	5.6	8.1	-8.6	15.5	-2.3	23.6	-6.1
Pulp and Waste Paper	1.6	27.3	14.3	13.0	15.9	14.3	16.1	14.6
Sand, Gravel and Stone	37.5	11.2	2.5	-30.6	40.0	7.1	170.8	2.8
Iron Ore and Scrap	16.9	8.8	11.1	-6.0	28.0	2.4	80.9	-5.7
Non-Ferrous Ores & Scrap	16.9	8.8	2.4	8.9	19.3	8.8	26.2	7.6
Sulphur, Clay and Salt	16.3	35.0	5.3	1.1	21.6	24.7	30.3	21.8
Primary Manuf. Goods	76.4	-8.9	16.5	14.0	93.0	-5.5	134.7	-4.4
Food and Farm Products	32.8	2.0	142.0	-5.5	174.8	-4.2	265.7	-5.1
All Manuf. Equipment	58.5	6.6	12.8	3.1	71.3	6.0	90.0	10.0
Waste and Scrap, NEC	**	0	**	0	**	0	3.1	13.2

 ^{**} denotes tonnage less than 50,000 tons or extreme percent change.
 Commodity abbreviations: Prod. (Products); Sand, Gravel and Stone also includes Soil and Rock; Manuf. (Manufactured); and NEC (Not Elsewhere Classified).

^{3.} Column totals are greater than row sums because of excluded commodity groups. Row totals are greater than column sums because intraport and intra-territory are not included.

Geographic Distribution of U.S. Waterborne Activities in 2003

	Coastal ¹	Great Lakes	Inland ²	Total ³
Number of Ports Handling				
Over 250,000 Short	111	50	26	187
Tons				
Domestic Traffic				
Short Tons (millions)	223.5	89.8	609.6	1,016.1
Ton-miles (billions)	278.9	47.5	278.4	606.1
Average Haul (miles)	1,248.2	529.5	456.6	596.5
Foreign Traffic⁴				
Short Tons (millions)	1,321.8	56.3	N/A	1,378.1
Ton-miles (billions)	75.2	32.9	N/A	108.1
Average Haul (miles)	56.9	585.0	N/A	78.5

- 1. All deep draft (over 12 feet) except Great Lakes and the Columbia River.
- 2. N/A denotes tonnage not applicable.
- 3. Domestic Total includes local traffic of 86.9 million short tons, 1.3 billion ton-miles, 15.4 miles average haul and intraterritory traffic of 6.4 million short tons. Ton-miles are not compiled for intra-territory traffic. Total may not equal column sum due to rounding.
- 4. Ton-miles and Average Haul for Coastal ports are based on the distance transported on U.S. waterways from entrance channels to ports and waterways; and for Great Lakes ports are based on the distance transported on the Great Lakes and St. Lawrence River to the International Boundary at St. Regis, Quebec, Canada.

Corps Dredging Facts

- Corps and contractor owned dredges removed 233.8 million cubic yards (mcy) of material from Corps constructed and
 maintained channels in FY 2003 at a cost of \$877.3 million. This was a 6% reduction in cubic yards, a 3.8% decrease
 in cost from FY 2002, and the third consecutive year of reduced dredging quantity.
- In FY 2003, maintenance dredging accounted for 82% of the quantity dredged and 67% of the cost. The average cost/cy for maintenance dredging increased 14.6% to \$3.13 while the average cost/cy for new work dredging decreased 18% to \$6.78 when compared to 2002 values.
- Ninety percent (\$798.7 million) of all FY 2003 Corps dredging dollars were paid to private dredging contractors who removed 85.5% (199.9 mcy) of the material dredged.
- In FY 2003, 108 private dredging companies submitted a total of 463 bids for 174 contracts. Awards were made to 56 different companies, 18 large and 38 small businesses. Large and small companies received 95 (55%) and 79 (45%) of the contracts respectively. Twenty-nine companies (52%) won only 1 contract, 22 (39%) won between 2 and 9contracts, and five companies (9%) won more than 10 contracts.
- The cutterhead pipeline dredge was the most widely used dredge in FY 2003 receiving 59% of the contracts, removing 53% of the contracted quantity and earning 46% of the contract dollars. Hopper dredges removed 34% of the quantity and earned 15% of the contract dollars. Mechanical dredges removed 7% of the quantity earning 23% of the contract dollars. The remaining dredging was performed by a combination of more than one type of dredge.
- The Districts that awarded the most contract dollars in FY 2003 were New York (\$90.5m) and New Orleans (\$81.9 m) with New Orleans and Galveston dredging the most cubic yards, 66 mcy and 34 mcy respectively.

Geographic Distribution of U.S. Waterway Facilities¹

	Atl	antic		Gulf	Р	acific
	Deep	Shallow	Deep	Shallow	Deep	Shallow
Commercial Facilities	1,473	587	1,427	820	1,387	363
Cargo	787	198	828	338	698	151
Service	500	274	496	387	608	171
Unused	186	115	103	95	91	41
Lock Sites ²	0	14	1	44	2	9
Lock Chambers ²	0	14	1	44	3	13

	Grea	t Lakes	Inland		Total	
	Deep	Shallow	Shallow	Deep	Shallow	All
Commercial Facilities	600	154	2,361	4,887	4,285	9,172
Cargo	378	78	1,629	2,681	2,394	5,075
Service	170	62	488	1,774	1,382	3,156
Unused	52	14	244	432	509	941
Lock Sites ²	4	1	137	7	205	212
Lock Chambers ²	6	1	175	10	247	257

^{1.} Waterways greater than 12 feet (except for the 14-15 foot portions of the Columbia and Snake rivers) are classified as deep draft.

Lock Facts

- The Corps owned or operated 257 lock chambers at 212 sites at the close of FY 2004, but only 195 sites with 240 chambers received funding. Nineteen Fox River locks (17 locks and two guard locks) were transferred to the State of Wisconsin in 2004.
- The new Montgomery Point Lock located on the White River in Arkansas was opened in 2004.
- Many of the 212 lock sites serving navigation include multi-purpose dams. For example, 46 lock-associated dams currently produce hydropower.
- In year 2004, 52% of all lock chambers, or 134 chambers, will have exceeded their 50-year design lives.
- Seven of the 257 chambers were built in the 1800's and are operational. The oldest operating locks in the U.S. are Kentucky River locks 1 and 2, built in 1839.
- Oregon's John Day Lock has the highest lift of any U.S. lock at 110 feet. This compares to the collective 404 foot lift of all 29 locks on the upper Mississippi River.
- The nation's busiest lock site is in Illinois, the Ohio River Lock 52 which moved 87.4 million tons in 2003.
- Two lock sites serving the greatest number of pleasure craft in 2003 were: Hiram M. Chittenden Locks, Seattle, WA
 which passed 46,670 vessels through two chambers; and Chicago Lock, Chicago, IL which moved 30,802 vessels
 through one chamber.

^{2.} Locks, including 5 control structures, owned and/or operated by the U.S. Army Corps of Engineers at the close of FY 2004.

Leading U.S. Ports in 2003 (Millions of Short Tons and Percent Change from 2002)

			Dome	estic	F	oreign	Tot	al ¹
Rank	Type ²	Port	Tons	%	Tons	%	Tons	%
1	С	South Louisiana, LA, Port of	118.4	-5.2	80.4	-12.1	198.8	-8.1
2	C	Houston, TX	64.0	2.7	126.9	10.2	190.9	7.5
3	С	New York, NY and NJ	66.2	2.0	79.7	14.5	145.9	8.5
4	С	Beaumont, TX	18.8	3.1	68.8	1.6	87.5	1.9
5	С	New Orleans, LA	35.0	5.2	48.9	-5.6	83.8	-1.4
6	I	Huntington, WV, OH, KY	77.6	-4.2	0.0	0	77.6	-4.2
7	С	Corpus Christi, TX	23.8	11.3	53.4	5.6	77.2	7.3
8	С	Long Beach, CA	16.8	8.0	52.4	.2	69.2	1.9
9	С	Texas City, TX	17.9	11.7	43.4	10.8	61.3	11.1
10	С	Baton Rouge, LA	38.1	-3.9	23.2	10.6	61.3	1.1
11	С	Plaquemines, LA, Port of	36.9	3.0	19.0	-18.4	55.9	-5.4
12	С	Lake Charles, LA	21.6	7.3	31.8	15.9	53.4	12.3
13	С	Los Angeles, CA	8.5	25.4	42.8	-5.8	51.3	-1.7
14	С	Mobile, AL	25.2	15.2	25.0	3.6	50.2	9.1
15	С	Valdez, AK	49.9	-1.3	0.0	26.7	49.9	-1.3
16	С	Tampa, FL	30.9	-2.9	17.4	4.8	48.3	3
17	I	Pittsburgh, PA	41.7	-19.9	0.0	0	41.7	-19.9
18	С	Baltimore, MD	16.1	5.9	24.1	2.0	40.2	3.5
19	L	Duluth-Superior, MN and WI	25.2	-15.1	13.1	-9.5	38.3	-13.3
20	С	Philadelphia, PA	14.5	5.4	18.8	-7.8	33.2	-2.5
21	1	St. Louis, MO and IL	32.4	5	0.0	0	32.4	5
22	С	Pascagoula, MS	10.5	-7.6	20.8	1.4	31.3	-1.8
23	С	Norfolk Harbor, VA	6.9	.8	24.3	15.3	31.2	11.8
24	С	Freeport, TX	5.4	7.0	25.1	13.7	30.5	12.4
25	С	Portland, ME	1.9	-6.7	27.3	8.6	29.2	7.5
26	С	Paulsboro, NJ	9.1	9.4	18.2	.7	27.3	3.4
27	С	Port Arthur, TX	8.7	16.7	18.5	21.4	27.2	19.8
28	С	Portland, OR	11.0	-1.4	15.8	2.1	26.8	.6
29	С	Marcus Hook, PA	10.1	4.7	16.1	3.3	26.2	3.8
30	С	Charleston, SC	6.4	7.1	18.8	-1.2	25.2	.8
31	С	Boston, MA	8.4	18.0	16.4	24.1	24.8	22.0
32	С	Savannah, GA	1.9	-3.6	21.5	14.8	23.4	13.1
33	С	Port Everglades, FL	12.6	.4	10.4	19.7	23.0	8.3
34	С	Richmond, CA	12.1	4.6	10.9	5.5	23.0	5.0
35	С	Tacoma, WA	7.6	1.9	15.4	17.0	23.0	11.6
36	L	Chicago, IL	20.9	11.2	1.7	6.7	22.6	10.8
37	С	Jacksonville, FL	10.9	32.5	10.8	11.9	21.7	21.4
38	С	Seattle, WA	5.9	-4.0	13.6	.8	19.4	7
39	I	Memphis, TN	18.2	10.9	0.0	0	18.2	10.9
40	С	Honolulu, HI	12.4	5.5	5.4	11.4	17.8	7.2
41	С	Anacortes, WA	13.2	3.4	2.6	1.0	15.8	3.0
42	С	San Juan, PR	9.1	28.9	5.4	2.6	14.6	17.6
43	L	Detroit, MI	10.4	-19.2	3.9	-11.9	14.3	-17.3
44	L	Indiana Harbor, IN	13.8	3.4	0.4	-29.9	14.1	2.1
45	L	Two Harbors, MN	13.0	-12.0	0.0	-100.0	13.0	-12.5
46	С	Oakland, CA	2.6	-14.4	10.1	6.4	12.6	1.4
47	L	Cleveland, OH	9.5	4.7	3.1	33.7	12.6	10.6
48	I	Cincinnati, OH	11.8	-9.1	0.0	0	11.8	-9.1
49	С	Matagorda Ship Channel, TX	3.6	25.3	8.0	20.2	11.7	21.7
50	L	Ashtabula, OH	4.6	2.7	5.8	8.8	10.4	6.0

Continued on the next panel

Leading U.S. Ports in 2003 - *continued* (Millions of Short Tons and Percent Change from 2002)

			Dome	estic	Fore	eign	Tot	al ¹
Rank	Type ²	Port	Tons	%	Tons	%	Tons	%
51	С	New Haven, CT	7.3	11.6	3.1	-14.5	10.4	2.4
52	С	Newport News, VA	5.5	-11.7	4.8	-6.2	10.3	-9.2
53	L	Toledo, OH	2.2	-60.9	7.7	38.3	9.9	-11.3
54	С	Providence, RI	4.5	-14.3	4.7	58.5	9.2	11.8
55	С	Miami, FL	1.4	12.0	7.8	1.2	9.2	2.7
56	L	Gary, IN	8.4	-6.9	0.6	36.4	9.0	-5.0
57	L	Presque Isle, MI	7.6	-11.6	1.1	-41.6	8.8	-17.2
58	С	New Castle, DE	7.2	1	1.3	-58.1	8.5	-17.8
59		Louisville, KY	8.5	7.4	0.0	0	8.5	7.4
60	L	Burns Waterway Harbor, IN	6.4	-3.3	1.7	-16.6	8.1	-6.4
61	С	Kalama, WA	1.0	24.5	6.7	19.3	7.7	19.9
62	С	Albany, NY	6.0	8.7	1.6	26.0	7.7	12.0
63	С	Galveston, TX	3.8	-3.4	3.8	-27.8	7.5	-17.4
64	L	Calcite, MI	6.3	-12.8	0.6	-58.7	6.8	-20.3
65	С	Camden-Gloucester, NJ	2.5	16.5	4.3	8.1	6.8	11.0
66	С	Wilmington, NC	3.3	-2.5	3.5	12.6	6.8	4.7
67	L	Conneaut, OH	3.6	-33.3	3.1	-38.8	6.7	-36.0
68	С	Vancouver, WA	2.1	2.0	4.6	5	6.6	.3
69	L	Stoneport, MI	6.4	-11.9	0.1	-73.1	6.4	-13.5
70	С	Nikishka, AK	3.1	-15.9	3.3	-6.4	6.4	-11.3
71	С	Barbers Point, Oahu, HI	3.4	-6.2	2.6	6.6	5.9	-1.0
72	L	Silver Bay, MN	5.9	21.7	0.0	-88.0	5.9	19.6
73	1	St. Paul, MN	5.2	-8.3	0.0	0	5.2	-8.3
74	С	Wilmington, DE	1.3	34.2	3.7	6.7	5.1	12.8
75	С	Longview, WA	0.8	-2.7	4.2	8.8	5.0	6.8
76	С	Portsmouth, NH	0.7	10.5	4.3	22.9	5.0	21.0
77	С	Port Manatee, FL	1.0	-5.2	3.9	21.4	4.9	14.8
78	L	Port Inland, MI	4.6	-8.6	0.2	-63.3	4.8	-14.0
79	С	Bridgeport, CT	2.9	-7.9	1.9	27.4	4.8	3.2
80	С	Port Canaveral, FL	1.7	44.1	3.1	9.3	4.8	19.4
81	С	Victoria, TX	4.7	.3	0.0	0	4.7	.3
82	L	Escanaba, MI	4.5	-1.8	0.1	46.0	4.6	-1.4
83	С	Palm Beach, FL	2.5	11.4	1.9	4.8	4.4	8.5
84	L	St. Clair, MI	4.2	-5.5	0.0	-22.3	4.3	-5.6
85	L	Sandusky, OH	1.5	27.4	2.7	-18.4	4.2	-6.1
86	I	Nashville, TN	4.0	-5.2	0.0	0	4.0	-5.2
87	I	Mount Vernon, IN	3.9	1.3	0.0	0	3.9	1.3
88	С	Kahului, Maui, HI	3.8	9.2	0.0	0	3.8	9.3
89	С	Brownsville, TX	1.4	-10.3	2.3	-26.7	3.7	-21.3
90	I	Vicksburg, MS	3.7	-12.5	0.0	0	3.7	-12.5
91	С	Ponce, PR	0.1	-13.4	3.6	9	3.7	-1.1
92	I	Kansas City, MO	3.6	2.1	0.0	0	3.6	2.1
93	L	Marblehead, OH	3.0	-4.6	0.6	135.3	3.6	6.3
94	L	Marine City, MI	3.5	-5.4	0.1	314.0	3.6	-3.4
95	I	Greenville, MS	3.2	15.7	0.0	0	3.2	15.7
96	С	Anchorage, AK	2.5	7.6	0.7	3.0	3.2	6.6
97	L	Milwaukee, WI	1.6	-8.8	1.4	1.8	3.0	-4.0
98	L	Alpena, MI	2.8	-6.5	0.2	-10.4	3.0	-6.8
99	С	Fall River, MA	1.0	-58.1	2.0	105.9	3.0	-12.2
100	С	Biloxi, MS	2.9	24.5	0.0	0	2.9	24.5

Total may not equal column sum due to rounding.

Type code depicts the location of the port as Coastal (C), Great Lakes (L), or Inland (I).

(Willions of Short Foris, Dillion			J= .	,		Trip ²	
	Length	Ton	ıs	Ton-Mi	les	Ton-Mi	les
Waterway	(miles)	2003	%	2003	%	2003	%
Atlantic Coast							
Atlantic Intracoastal Waterway, VA-FL	793	1.9	3.5	0.2	21.8	0.3	15.8
Intracoastal Wtwy, Jacksonville to Miami, FL	349	0.9	69.5	**	63.6	**	23.9
Gulf Coast							
Bayou Teche, LA	107	1.4	-10.0	**	-10.5	0.5	-18.3
Black Warrior and Tombigbee rivers, AL	449	21.0	10.3	3.7	5.8	7.3	10.5
Chocolate Bayou, TX	13	3.3	13.8	**	14.4	0.8	3
Gulf Intracoastal Waterway, TX-FL	1,109	117.8	9.5	18.6	6.8	55.0	5.5
GIWW: Morgan City-Port Allen, LA	64	24.3	16.6	1.5	16.4	22.7	15.8
Petit Anse, Tigre, and Carlin bayous, LA	16	2.5	13.1	**	6.9	3.2	22.5
Tennessee-Tombigbee Waterway, AL and MS	234	6.2	2	1.2	1.1	4.1	13.9
Mississippi River System							
Allegheny River, PA	72	3.3	17.7	**	16.6	1.3	15.8
Atchafalaya River, LA	121	9.8	-8.8	0.6	-12.8	6.6	-7.9
Big Sandy River, KY and WV	27	22.6	-9.9	0.1	-9.3	6.1	-7.7
Cumberland River, KY and TN	381	20.6	-8.7	2.2	-14.8	8.8	-9.4
Green and Barren rivers, KY	109	7.9	-24.2	0.5	-31.0	2.8	-48.5
Illinois Waterway, IL	357	45.0	4.6	8.5	-1.6	41.2	-5.6
Kanawha River, WV	91	19.4	.8	1.3	19.4	8.0	-7.3
McClellan-Kerr Arkansas R. Nav. Sys., AR/OK	462	13.0	9.1	2.7	6.2	7.6	10.3
Mississippi River Mpls, MN to Mouth of Passes	1,814	308.2	-2.5	167.5	-8.1	223.2	-6.1
Minneapolis, MN to Mouth of Missouri River	663	77.8	-7.4	14.6	-13.8	85.0	-10.5
Mouth of Missouri R. to Mouth of Ohio R.	195	111.5	-8.2	18.8	-8.4	115.3	-9.9
Mouth of Ohio River up to Baton Rouge, LA	720	185.5	-6.5	112.3	-7.8	194.6	-7.4
Baton Rouge up to New Orleans, LA ³	130	212.9	-4.3	16.3	-6.4	180.1	-7.7
New Orleans, LA to Mouth of Passes ³	106	115.8	.8	5.5	-1.1	65.6	-1.6
Missouri R. (MO, KS, NE & IA) to Sioux City, IA	732	8.1	-2.6	0.3	-37.4	0.6	-47.4
Monongahela River, PA and WV	129	27.6	-27.8	1.1	-20.6	8.3	-16.0
Ohio River, PA, WV, OH, KY, IN, and IL	981	228.8	-5.9	54.2	-5.8	119.7	-6.7
Ouachita and Black rivers, AR and LA	332	2.2	57.7	0.3	41.2	1.1	62.8
Red River, LA	212	4.2	12.6	0.3	-15.9	2.7	9.1
Tennessee River, TN, KY, MS and AL	652	49.8	13.4	6.7	.5	26.8	6.5
Pacific Coast							
Columbia River System, OR, WA, and ID ³	596	16.5	.5	2.6	12.7	2.2	21.3
Columbia River and Willamette River							
below Vancouver, WA and Portland, OR ³	113	16.2	1.5	0.6	-9.9	2.2	20.6
Vancouver, WA to The Dalles, OR	85	9.4	18.0	0.7	17.3	2.2	21.7
The Dalles Dam to McNary Lock and Dam	100	8.5	17.5	0.7	22.0	2.1	21.8
Above McNary L & D to Kennewick, WA	39	6.5	27.0	0.2	26.0	1.8	27.7
Snake River (WA and ID) to Lewiston, ID	141	5.3	24.6	0.3	29.6	1.6	25.5
Willamette River above Portland, OR	118	1.3	-22.3	**	-93.1	**	-14.5

^{1. **} denotes ton-miles of less than 50 million.

^{2.} Internal and intraport tons times total distance from origin to destination.

^{3.} Includes coastwise entrance channel miles for tons and ton-miles but not for trip ton-miles.

		Dom	estic	For	eign		Total ²
Rank	State	Tons	%	Tons	%	Tons	%
1	Texas	123.8	5.7	350.2	7.7	473.9	7.2
2	Louisiana	265.5	-1.4	204.0	-5.4	469.5	-3.2
3	California	48.1	4.8	145.2	.7	193.4	1.7
4	Florida	74.6	5.7	56.9	9.7	131.6	7.4
5	Ohio	89.9	-6.9	23.8	4.6	113.7	-4.7
6	Illinois	111.5	-6.0	1.8	6.5	113.3	-5.8
7	New Jersey	50.0	.0	61.6	2.6	111.7	1.4
8	Washington	54.1	.8	52.4	10.9	106.5	5.5
9	Pennsylvania	66.5	-11.5	37.9	-5.7	104.4	-9.5
10	New York	53.0	2.0	46.4	28.6	99.4	12.9
11	Kentucky	99.3	7	0.0	0	99.3	7
12	West Virginia	73.3	-8.5	0.0	0	73.3	-8.5
13	Alabama	47.6	11.4	25.0	3.6	72.6	8.6
14	Indiana	65.4	-4.6	2.6	-9.6	68.1	-4.8
15	Michigan	54.7	-7.8	11.7	-19.2	66.4	-10.0
16	Alaska	57.7	-2.5	7.7	-7.5	65.4	-3.2
17	Virgin Islands	23.1	38.5	26.9	23.5	50.0	30.0
18	Virginia	18.3	-5.3	31.7	12.6	50.0	5.3
19	Minnesota	38.0	-10.5	9.7	79.1	47.7	3
20	Maryland	22.0	4.0	25.5	-2.3	47.5	.5
21	Mississippi	24.2	-2.3	23.2	1.2	47.4	6
22	Tennessee	45.8	7	0.0	0	45.8	7
23	Delaware	20.4	3.4	21.7	14.9	42.1	9.0
24	Missouri	34.0	13.3	0.0	0	34.0	13.3
25	Wisconsin	28.3	-9.6	5.3	-53.0	33.5	-21.0
26	Oregon	14.0	-2.2	17.8	2.5	31.8	.4
27	Maine	3.0	5.4	28.7	9.1	31.7	8.8
28	Massachusetts	10.8	1.2	19.9	28.5	30.7	17.4
29	Puerto Rico	13.1	26.2	16.5	19.1	29.6	22.1
30	South Carolina	6.5	6.8	21.4	4.3	27.8	4.9
31	Georgia	2.0	-4.1	23.4	10.3	25.4	9.0
32	Hawaii	15.7	1.9	8.0	9.8	23.6	4.4
33	Connecticut	13.6	8.9	5.0	-2.8	18.6	5.5
34	Arkansas	15.1	14.6	0.0	0	15.1	14.6
35	Iowa	14.5	-13.6	0.0	0	14.5	-13.6
36	North Carolina	4.8	2.0	5.5	9.3	10.2	5.8
37	Rhode Island	4.6	-13.8	4.8	55.4	9.4	11.6
38	New Hampshire	0.7	10.5	4.3	22.9	5.0	21.0
39	Oklahoma	4.9	10.2	0.0	0	4.9	10.2
40	Kansas	1.7	-1.9	0.0	0	1.7	-1.9
41	Idaho	1.1	6.1	0.0	0	1.1	6.1
42	District of Columbia	0.8	38.2	0.0	0	0.8	38.2
43	American Samoa	0.3	4.5	0.0	0	0.3	4.5
44	Guam	0.2	2.0	0.0	0	0.2	2.0

Includes shipments, receipts and intrastate commerce.
 Total may not equal column sum due to rounding.

U. S. Flag Vessels as of December 31, 2003¹

			,	Age ²	•	•	
Vessel Type	Number	< = 5	6 - 10	11 - 15	16 - 20	21 - 25	> 25
Vessel (total) ³	39,983	6,381	5,085	3,712	1,709	9,912	12,972
Self-Propelled (total)	8,643	868	532	476	584	2,003	4,162
Dry Cargo	969	114	93	110	127	168	354
Tanker	104	9	7	3	15	32	38
Pushboat	2,436	159	102	68	95	618	1,391
Tugboat	2,736	203	115	80	103	517	1,714
Passenger ⁴	789	69	89	122	133	84	287
Offshore Supply	1,609	314	126	93	111	584	378
Barge (total)	31,335	5,513	4,551	3,236	1,125	7,909	8,807
Dry Covered	12,873	2,384	2,195	557	151	4,748	2,817
Dry Open	8,156	1,577	1,464	1,668	585	1,493	1,363
Lash/Seabee	897	0	0	329	38	9	521
Deck	5,232	931	486	416	266	862	2,119
Other Dry Cargo⁵	146	17	10	6	14	23	64
Single Hull Tank	578	7	30	9	15	128	389
Double Hull Tank	2,809	447	348	245	47	532	1,189
Other Tank ⁶	644	150	18	6	9	114	345

- 1. Survey date as of December 31, 2003; includes updates through August 30, 2004.
- 2. Age (in years) is based upon the year the vessel was built or rebuilt, using calendar year 2003 as the base year.
- 3. Total is greater than sum because of 5 unclassified vessels and 212 vessels of unknown age; figures include vessels available for operation.
- 4. Includes passenger, excursion/sightseeing.
- 5. Includes dry cargo barges that may be open or covered, railroad car, pontoon, RO-RO, container, or convertible.
- 6. Includes tank barges that may be double sided only or double bottom only.

U.S. Waterborne Container Traffic by Region in 2003

(Loaded and Empty in Thousands of TEUs¹)

	Dome	stic ²	Foreign	_	Total	
Region	Loaded	Empty	Loaded	Empty	Loaded	Empty
Total ³						
Inbound	2,154	428	14,015	N/A	16,168	N/A
Outbound	2,154	428	7,102	N/A	9,256	N/A
Atlantic						
Inbound	881	81	5,478	N/A	6,359	N/A
Outbound	863	81	3,346	N/A	4,208	N/A
Gulf						
Inbound	99	0	710	N/A	809	N/A
Outbound	219	0	733	N/A	952	N/A
Pacific						
Inbound	1,174	347	7,826	N/A	9,000	N/A
Outbound	1,072	347	3,023	N/A	4,095	N/A

^{1.} TEU = Twenty Foot Equivalent Units. Foreign empties not included.

^{2.} A domestic container is counted as an inbound and outbound movement.

^{3.} Total includes less than 500 TEUs for the Great Lakes.

Ports and Waterways Facts

- The State with the most localities handling containers is Alaska with 69.
- On the west coast over 125 container cranes, over half having an outboard reach in excess of 160 feet, are
 located at the two ports of Long Beach and Los Angeles. Over 40 container cranes, 14 having an outboard
 reach in excess of 160 feet, are at the two ports of Seattle and Tacoma.
- The Port of New York/New Jersey operates the greatest number of container cranes, 50, on the east coast.
- The 12,000 miles of inland and intracoastal waterways, like highways, operate as a system, and much of the commerce moves on multiple segments. They serve as connecting arteries, much like neighborhood streets help people reach interstate highways.
- Waterways are operated by the Corps as multi-purpose, multi-objective projects. They not only serve
 commercial navigation, but in many cases also provide hydropower, flood protection, municipal water supply,
 agricultural irrigation, recreation, and regional development.
- Forty-one states, 16 state capitals and all states east of the Mississippi River are served by commercially navigable waterways.
- Louisiana has over 1000 port facilities (Texas has an equal number) on 2000 miles of channels maintained by the Corps.
- Nearly 500 U.S. grain transfer facilities are served by water transportation with the largest number, over 125 facilities, located on the Upper Mississippi River and the Illinois Waterway.
- The state of Kentucky has the longest shoreline along any one inland waterway, 664 miles on the Ohio River.
- The state of Michigan has deep draft port facilities on 4 Great Lakes. Pennsylvania and New York have ports along both the Great Lakes and the Atlantic Coast.
- The port areas of New York/New Jersey, Seattle and San Francisco have the largest number of ferry passengers in the U.S.
- The deep-water port located furthest from the sea is Baton Rouge, LA at miles 168 to 255 above the Head of Passes on the Mississippi River.

Trust Fund Facts

- The Inland Waterway Trust Fund earned \$97.76 million in FY 2004. This included \$90.85 million paid by the barge and towing industry and \$6.91 million interest. The Fund disbursed \$117.26 million for construction projects leaving a balance of \$372.1 million.
- The FY 2004 Harbor Maintenance Trust Fund equity grew 13.1% from FY 2003 to \$2.37 billion. Total receipts grew 21.69% to \$922.4 million. The taxes from domestic commerce of \$56.6 million grew 44.6% over the previous year. The taxes collected from imports grew 11.3% to \$694.9 million. All transfers totaled \$648.2 million (U.S. Army Corps of Engineers received \$630.9 million, an increase from FY 2003's \$568.9 million).

Vessel Facts

- Domestic vessel operating companies operating vessels on U. S. waterways increased 19.6% from 2002 to 2003 from 2,624 to 3,137 companies.
- U.S. fleet construction of barges is down for the last four years from 1,156 in 1999 to 568 built in 2003.

Top 20 U.S. Ports Handling Foreign Waterborne In-transits¹ in 2003

(Thousands of Short Tons and Percent of Total Foreign Traffic)

			In	-transits	% Total	Total
Rank	Port	Inbound	Outbound	Total	Foreign	Foreign
	Total In-transits	30,086.3	3,331.6	33,417.9	2.4	1,378,115.7
1	Portland, ME	22,878.7	0.6	22,879.4	83.8	27,306.9
2	New York, NY and NJ	1,056.1	694.3	1,750.4	2.2	79,684.8
3	Long Beach, CA	797.5	225.9	1,023.4	2.0	52,371.3
4	Brownsville, TX	946.8	10.3	957.1	41.4	2,314.7
5	Los Angeles, CA	804.1	147.5	951.6	2.2	42,791.4
6	Houston, TX	482.4	313.2	795.6	0.6	126,893.4
7	Miami, FL	410.3	339.9	750.2	9.6	7,796.3
8	Tacoma, WA	212.7	235.7	448.4	2.9	15,409.3
9	Charleston, SC	273.8	99.9	373.7	2.0	18,778.8
10	Philadelphia, PA	300.9	10.8	311.7	1.7	18,792.9
11	Port Everglades, FL	184.6	73.1	257.7	2.5	10,407.7
12	Savannah, GA	117.7	116.9	234.6	1.1	21,502.1
13	San Diego, CA	221.3	0.0	221.3	9.3	2,367.7
14	Palm Beach, FL	123.6	90.9	214.5	11.5	1,864.5
15	Portland, OR	11.3	173.1	184.5	1.2	15,752.9
16	San Juan, PR	149.8	32.4	182.2	3.3	5,444.5
17	New Orleans, LA	91.2	88.2	179.4	0.4	48,876.5
18	Seattle, WA	98.6	66.5	165.1	1.2	13,573.4
19	Baltimore, MD	125.1	15.8	140.9	0.6	24,096.2
20	Norfolk Harbor, VA	77.3	39.9	117.3	0.5	24,304.4

¹ Foreign Waterborne In-transits: Commerce shipped in-bond through the United States from one foreign country to another. Inbound enters U.S. via vessel and outbound exits via vessel.

Waterborne Commerce Facts

- In-transit (commerce with a foreign origin and a foreign destination) waterborne commerce of 33.4 million short tons used 73 different U.S. ports in 2003.
- Over 83% and 41% of all foreign traffic in 2003 for Portland, ME and Brownsville, TX, respectively, were in-transit.
- Crude petroleum comprised 68.5% of U.S. waterborne in-transits, while food and farm ranked second with 8.4%, based on weight in 2003.
- The top five U.S. ports ranked by dollar value of foreign traffic for calendar year 2003 were: Los Angeles, CA; New York, NY and NJ; Long Beach, CA; Houston, TX; and Charleston, SC.
- In 2003, 8.1% of all U.S. waterborne commerce by weight was containerized (1.2% of domestic and 13.3% of foreign).
- The Consolidated Port of Hampton Roads exported the largest volume of coal in the U.S., 12.9 million short tons in 2003, up 27.9% from 2002.
- The St. Lawrence Seaway Development Corporation reported 28.9 million metric tons (31.9 million short tons) moving on the Montreal-Lake Ontario section of the St. Lawrence Seaway for calendar year 2003, a 3.7% decrease from 2002.

For Further Information

This fact card provides an overview of information about U.S. ports and waterways for the latest complete statistical year. Statistics are produced by the U.S. Army Corps of Engineers (USACE) Navigation Center (NDC). Domestic data are collected by NDC. U.S. foreign tonnage and vessel movements are derived from data provided by the Port Import Export Reporting Service, U.S. Customs Service, U.S. Bureau of the Census, and Statistics Canada. Contact one of the following sites for information on NDC's products and services:

• Web Site: Access for up-to-date statistics:

www.iwr.usace.army.mil/ndc

 NDC: Port, waterways, lock and dock infrastructure data; lock performance; dredging statistics; and water transportation summary materials.

Navigation Data Center
U.S. Army Corps of Engineers
7701 Telegraph Road
Alexandria, VA 22315-3868
703-428-9061, Fax 703-428-6047
E-mail: CEIWR-NDC.WEBMASTER@usace.army.mil

 Waterborne Commerce Statistics Center: Commercial movements of foreign and domestic cargo and vessels; and U.S. vessel and vessel operator statistics.

Waterborne Commerce Statistics Center, USACE PO Box 61280 New Orleans, LA 70161-1280 504-862-1404, 504-862-1424, FAX 504-862-1423 E-mail: CEIWR-NDCWCSC.WEBMASTER@usace.army.mil

User feedback is essential for USACE to meet current needs. Provide comments to Director, Navigation Data Center, 7701 Telegraph Road, Alexandria, VA 22315-3868, Fax: 703-428-6047 or e-mail CEIWR-NDC.WEBMASTER@usace.army.mil